

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(2-aminoethyl)-1*H*-benzimidazole- $\kappa^2 N^2$, N^3](nitrato- $\kappa^2 O$,O')cobalt(II) chloride trihydrate

Jing Zhao,^{a,b,c} Heng Zhang^d and Guoyi Zhu^a*

^aChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, ^bGraduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China, ^cThe Experimental and Practical Teaching Centre, Shijiazhuang University of Economics, Shijiazhuang 050031, People's Republic of China, and ^dInstrumental Analysis Center, Hebei Normal University, Shijiazhuang 050024, People's Republic of China Correspondence e-mail: zhuguoyi@ciac.jl.cn

Received 20 April 2012; accepted 25 April 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.050; wR factor = 0.131; data-to-parameter ratio = 13.2.

In the title compound, $[Co(NO_3)(C_9H_{11}N_3)_2]Cl\cdot3H_2O$, the Co^{II} atom is coordinated by four N atoms from two chelating 2-(2-aminoethyl)-1*H*-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octahedral coordination environment. In the crystal, N-H···Cl, N-H···O, O-H···Cl and O-H···O hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network. π - π interactions between the imidazole and benzene rings and between the benzene rings are observed [centroid-centroid distances = 3.903 (3), 3.720 (3), 3.774 (3) and 3.926 (3) Å].

Related literature

For background to the coordination chemistry of benzimidazole and 2-substituted benzimidazole derivatives towards transition metal ions, see: Téllez *et al.* (2008). For the structures and properties of transition metal complexes with 2-(2aminoethyl)benzimidazole, see: Dash *et al.* (1995); Zhang *et al.* (2008). For the synthesis of the 2-(2-aminoethyl)benzimidazole ligand, see: Cescon & Day (1962).

Experimental

Crystal data

 $[Co(NO_3)(C_9H_{11}N_3)_2]Cl·3H_2O$ $M_r = 532.85$ Triclinic, $P\overline{1}$ a = 7.408 (2) Å b = 9.808 (3) Å c = 17.280 (6) Å a = 76.238 (7)° $\beta = 89.203$ (7)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.780, T_{max} = 0.794$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.131$ S = 0.993936 reflections 298 parameters $\begin{array}{l} \gamma = 67.867 \ (5)^{\circ} \\ V = 1125.6 \ (6) \ \text{\AA}^3 \\ Z = 2 \\ \text{Mo } \kappa \alpha \text{ radiation} \\ \mu = 0.93 \ \text{mm}^{-1} \\ T = 296 \ \text{K} \\ 0.28 \times 0.27 \times 0.26 \ \text{mm} \end{array}$

5677 measured reflections 3936 independent reflections 2895 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

3 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.35$ e Å⁻³ $\Delta \rho_{min} = -0.86$ e Å⁻³

Table 1 Hydrogen-bond geometry (Å $^{\circ}$)

Hydrogen-bond	geometry	(A,).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O4 N3-H3B\cdots C11^{i} N3-H3C\cdots O3^{ii} N5-H5\cdots C1^{iiii} N6-H6A\cdots O4^{i} N6-H6B\cdots O3^{ii} O4-H1O4\cdots O5 $	0.86 0.90 0.90 0.86 0.90 0.90 0.90 0.85	1.91 2.56 2.08 2.29 2.54 2.12 1.92	2.757 (5) 3.322 (3) 2.897 (4) 3.148 (4) 3.299 (5) 2.897 (4) 2.766 (4)	168 143 150 174 142 145 179
$\begin{array}{c} 04 - H2 O4 \cdots O6^{iv} \\ 05 - H1 O5 \cdots C11^{v} \\ 05 - H2 O5 \cdots O1^{vi} \\ 06 - H1 O6 \cdots O2 \\ 06 - H2 O6 \cdots C11^{vi} \end{array}$	0.85 0.85 0.85 0.85 0.85 0.85	1.93 2.41 2.03 2.01 2.34	2.781 (5) 3.189 (3) 2.872 (4) 2.828 (4) 3.192 (4)	179 153 174 162 176

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x, y, z + 1; (iv) -x + 1, -y + 2, -z + 1; (v) x - 1, y + 1, z; (vi) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Youth Foundation of Hebei Normal University (No. L2006Q20).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2542).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cescon, L. A. & Day, A. R. (1962). J. Org. Chem. 27, 581-586.

Dash, A. C., Acharya, A. N. & Sahoo, R. (1995). Transition Met. Chem. 20, 147–152.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Téllez, F., López-Sandoval, H., Castillo-Blum, S. E. & Barba-Behrens, N. (2008). Arkivoc, (v), 245–275.
Zhang, J., Li, Y., Huo, F. & Zhang, Z. (2008). Acta Cryst. E64, m182.

supplementary materials

Acta Cryst. (2012). E68, m711-m712 [doi:10.1107/S1600536812018612]

Bis[2-(2-aminoethyl)-1*H*-benzimidazole- $\kappa^2 N^2$, N^3](nitrato- $\kappa^2 O$,O')cobalt(II) chloride trihydrate

Jing Zhao, Heng Zhang and Guoyi Zhu

Comment

Benzimidazole and 2-substituted benzimidazole derivatives are important heteroaromatic compounds acting as multidentate ligands towards transition metal ions in coordination chemistry (Téllez *et al.*, 2008). 2-(2-Aminoethyl)benzimidazole is a bidentate ligand possessing two aromatic rings and can chelate a 3d transition-metal ion through two N atoms of the pendant aminoethyl group and the imidazole ring (Zhang *et al.*, 2008). Furthermore, this ligand has a larger conjugated π -system than imidazole, which is expected to display a stability-enhancement due to the hydrophobic interaction with the substituted group of the amino acids or to be involved in aromatic ring π - π stacking effects with purine and pyrimidine bases. Based on the inherent characters of the benzimidazole group, a large number of studies have been reported on metal complexes of benzimidazole-based ligands (Dash *et al.*, 1995). To our knowledge, Co^{II} complexes with 2-(2-aminoethyl)benzimidazole ligand have not been reported. In this paper, we report the crystal structure of one such complex.

The title compound consists of a $[Co(NO_3)(C_9H_{11}N_3)_2]^+$ complex cation, a chloride anion and three hydrate solvent molecules. As shown in Fig. 1, two bidentate 2-(2-aminoethyl)benzimidazole ligands are coordinated to the Co^{II} atom solely *via* two N atoms. A bidentate nitrate is coordinated to the Co^{II} atom *via* two O atoms. The coordination geometry around the Co^{II} atom is distorted octahedral, with bite angles of 68.37 (12)° for the nitrate anion and 89.44 (13) and 89.37 (14)° for the two bidentate ligands. The other *cis* bond angles at the Co^{II} atom fall in the range of 89.37 (14)– 98.11 (13)° and the *trans* bond angles are 166.29 (13), 166.39 (13) and 178.40 (14)°, suggesting a significant deviation from a perfect octahedral coordination. The Co—N bond lengths range from 1.948 (3) to 1.957 (3) Å, with an average of 1.952 (3) Å. The Co—O bond lengths are 1.928 (3) and 1.930 (3) Å. Extensive hydrogen bonds in the crystal, as shown in Fig. 2 and Table 1, link the complex cations, chloride anions and hydrate solvent molecules into a three-dimensional network.

Experimental

The title compound was prepared by adding a methanol solution (5 ml) of $Co(NO_3)_2.6H_2O$ (0.1 mmol) to a methanol solution (5 ml) of 2-(2-aminoethyl)benzimidazole dihydrochloride (0.2 mmol) neutralized by sodium hydroxide (Cescon & Day, 1962). The mixture was stirred at room temperature for 15 h and then filtered. Purple crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent after several days. Analysis, calculated for $C_{18}H_{28}ClCoN_7O_6$: C 40.57, H 5.30, N 18.40%; found: C 40.42, H 5.48, N 18.36%.

Refinement

H atoms bonded to C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH₂) and N—H = 0.86 (NH), 0.90 (NH₂) Å and with U_{iso} (H) = 1.2 U_{eq} (C,N). H atorms of water

molecules were found from a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and with $U_{iso}(H) = 1.2U_{eq}(O)$.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level.

Figure 2

The packing diagram viewed along the *a* axis. Dashed lines denote hydrogen bonds.

Bis[2-(2-aminoethyl)-1*H*-benzimidazole- $\kappa^2 N^2$, N^3] (nitrato- $\kappa^2 O$, O') cobalt(II) chloride trihydrate

Crystal data	
$[Co(NO_3)(C_9H_{11}N_3)_2]Cl \cdot 3H_2O$	Z = 2
$M_r = 532.85$	F(000) = 554
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.572 {\rm M}$
Hall symbol: -P 1	Mo $K\alpha$ radiat
a = 7.408 (2) Å	Cell parameter
b = 9.808 (3) Å	$\theta = 2.9 - 23.7^{\circ}$
c = 17.280 (6) Å	$\mu = 0.93 \text{ mm}$
$\alpha = 76.238(7)^{\circ}$	T = 296 K
$\beta = 89.203 (7)^{\circ}$	Cube, purple
$\gamma = 67.867 (5)^{\circ}$	0.28 imes 0.27 imes
V = 1125.6 (6) Å ³	
Data collection	
Bruker APEXII CCD	5677 measure
diffractometer	3936 indepen
Radiation source: fine-focus sealed tube	2895 reflection
Graphite monochromator	$R_{\rm int} = 0.029$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ},$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 11$

 $T_{\rm min} = 0.780, T_{\rm max} = 0.794$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.131$ Z = 2 F(000) = 554 $D_x = 1.572 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1285 reflections $\theta = 2.9-23.7^{\circ}$ $\mu = 0.93 \text{ mm}^{-1}$ T = 296 KCube, purple $0.28 \times 0.27 \times 0.26 \text{ mm}$

5677 measured reflections 3936 independent reflections 2895 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 11$ $l = -20 \rightarrow 20$

S = 0.993936 reflections 298 parameters 3 restraints

Primary atom site location: structure-invariant	H-atom parameters constrained
direct methods	$w = 1/[\sigma^2(F_o^2) + (0.0713P)^2]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} = 0.001$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.76176 (7)	0.51980 (6)	0.74870 (3)	0.01888 (18)
C11	1.08278 (18)	0.11248 (13)	0.14279 (7)	0.0416 (3)
C1	0.7611 (6)	0.4443 (5)	0.5882 (2)	0.0240 (9)
C2	0.7801 (6)	0.2936 (5)	0.6108 (3)	0.0324 (10)
H2A	0.7928	0.2425	0.6644	0.039*
C3	0.7796 (7)	0.2221 (6)	0.5509 (3)	0.0413 (12)
H3	0.7923	0.1211	0.5646	0.050*
C4	0.7604 (7)	0.2986 (6)	0.4698 (3)	0.0430 (12)
H4	0.7585	0.2476	0.4310	0.052*
C5	0.7445 (6)	0.4455 (6)	0.4467 (3)	0.0371 (11)
H5A	0.7321	0.4959	0.3929	0.045*
C6	0.7475 (6)	0.5175 (5)	0.5072 (2)	0.0291 (10)
C7	0.7441 (6)	0.6755 (5)	0.5797 (2)	0.0248 (9)
C8	0.7469 (7)	0.8163 (5)	0.5963 (3)	0.0361 (11)
H8A	0.6403	0.9022	0.5633	0.043*
H8B	0.8678	0.8260	0.5794	0.043*
C9	0.7298 (6)	0.8281 (5)	0.6815 (2)	0.0285 (10)
H9A	0.7666	0.9102	0.6877	0.034*
H9B	0.5949	0.8524	0.6939	0.034*
C10	0.6666 (6)	0.5948 (5)	0.9090 (2)	0.0239 (9)
C11	0.5304 (6)	0.7426 (5)	0.8863 (2)	0.0317 (10)
H11	0.4912	0.7924	0.8328	0.038*
C12	0.4541 (7)	0.8140 (6)	0.9470 (3)	0.0439 (13)
H12	0.3620	0.9134	0.9332	0.053*
C13	0.5108 (7)	0.7422 (6)	1.0267 (3)	0.0447 (13)
H13	0.4561	0.7941	1.0652	0.054*
C14	0.6464 (7)	0.5955 (6)	1.0504 (3)	0.0399 (12)
H14	0.6846	0.5462	1.1040	0.048*
C15	0.7235 (6)	0.5244 (5)	0.9898 (2)	0.0294 (10)
C16	0.8857 (6)	0.3640 (5)	0.9178 (2)	0.0265 (9)
C17	1.0300 (7)	0.2219 (5)	0.9025 (3)	0.0362 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H17A 1	.0044	0.1368	0.9349	0.043*
H17B 1	.1595	0.2109	0.9203	0.043*
C18 1	.0314 (7)	0.2116 (5)	0.8160 (3)	0.0336 (10)
H18A 1	.1505	0.1298	0.8095	0.040*
H18B 0).9214	0.1882	0.8028	0.040*
N1 0).7582 (5)	0.5483 (4)	0.63286 (18)	0.0229 (7)
N2 0).7352 (5)	0.6619 (4)	0.50395 (19)	0.0317 (8)
H2 0).7239	0.7317	0.4612	0.038*
N3 0).8577 (5)	0.6833 (4)	0.73877 (18)	0.0249 (8)
H3B 0).8654	0.7008	0.7872	0.030*
H3C 0).9790	0.6530	0.7222	0.030*
N4 0).7730 (5)	0.4905 (4)	0.86430 (18)	0.0233 (8)
N5 0).8614 (5)	0.3800 (4)	0.9931 (2)	0.0346 (9)
H5 0).9212	0.3121	1.0359	0.042*
N6 1	.0196 (4)	0.3571 (4)	0.76028 (19)	0.0247 (8)
H6A 1	.0511	0.3406	0.7119	0.030*
H6B 1	.1082	0.3872	0.7783	0.030*
N7 0).4435 (5)	0.5208 (4)	0.7462 (2)	0.0332 (8)
O1 0	0.6072 (4)	0.3975 (3)	0.75714 (15)	0.0238 (6)
O2 0).4853 (4)	0.6428 (3)	0.73689 (15)	0.0248 (6)
O3 0	0.2770 (4)	0.5211 (3)	0.74554 (16)	0.0325 (7)
O4 0).7163 (5)	0.8522 (4)	0.35574 (18)	0.0491 (9)
H1O4 0).6480	0.8549	0.3158	0.059*
H2O4 0).7584	0.9225	0.3391	0.059*
O5 0).4947 (5)	0.8627 (4)	0.2253 (2)	0.0512 (9)
H1O5 0).4095	0.9325	0.1902	0.061*
H2O5 0).4738	0.7817	0.2302	0.061*
O6 0).1492 (5)	0.9162 (4)	0.7010 (2)	0.0515 (9)
H1O6 0	0.2360	0.8278	0.7051	0.062*
H2O6 0).0865	0.9132	0.7425	0.062*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0188 (3)	0.0192 (3)	0.0200 (3)	-0.0091 (2)	0.0009 (2)	-0.0046 (2)
0.0477 (7)	0.0351 (7)	0.0390 (7)	-0.0174 (6)	-0.0086 (5)	-0.0009 (5)
0.022 (2)	0.030 (2)	0.022 (2)	-0.0093 (19)	0.0009 (17)	-0.0119 (18)
0.039 (3)	0.032 (2)	0.031 (2)	-0.017 (2)	0.005 (2)	-0.011 (2)
0.050 (3)	0.036 (3)	0.048 (3)	-0.020 (2)	0.004 (2)	-0.022 (2)
0.049 (3)	0.054 (3)	0.040 (3)	-0.027 (3)	0.005 (2)	-0.028 (3)
0.037 (3)	0.059 (3)	0.023 (2)	-0.022 (2)	0.0043 (19)	-0.017 (2)
0.021 (2)	0.037 (3)	0.027 (2)	-0.010 (2)	0.0001 (18)	-0.007 (2)
0.028 (2)	0.028 (2)	0.020 (2)	-0.0139 (19)	0.0017 (17)	-0.0045 (18)
0.048 (3)	0.028 (2)	0.032 (2)	-0.017 (2)	0.005 (2)	-0.001 (2)
0.032 (2)	0.018 (2)	0.033 (2)	-0.0085 (19)	-0.0006 (19)	-0.0039 (18)
0.024 (2)	0.029 (2)	0.025 (2)	-0.0147 (19)	0.0019 (17)	-0.0097 (18)
0.036 (3)	0.030 (2)	0.026 (2)	-0.009 (2)	0.0018 (19)	-0.0075 (19)
0.036 (3)	0.049 (3)	0.050 (3)	-0.012 (3)	0.011 (2)	-0.028 (3)
0.046 (3)	0.069 (4)	0.037 (3)	-0.028 (3)	0.019 (2)	-0.036 (3)
0.046 (3)	0.064 (4)	0.020 (2)	-0.030 (3)	0.007 (2)	-0.016 (2)
	$\begin{array}{c} U^{11} \\ \hline 0.0188 (3) \\ 0.0477 (7) \\ 0.022 (2) \\ 0.039 (3) \\ 0.050 (3) \\ 0.050 (3) \\ 0.049 (3) \\ 0.037 (3) \\ 0.021 (2) \\ 0.028 (2) \\ 0.028 (2) \\ 0.048 (3) \\ 0.032 (2) \\ 0.036 (3) \\ 0.036 (3) \\ 0.046 (3) \\ 0.046 (3) \\ \end{array}$	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0188 (3) & 0.0192 (3) \\ \hline 0.0477 (7) & 0.0351 (7) \\ \hline 0.022 (2) & 0.030 (2) \\ \hline 0.039 (3) & 0.032 (2) \\ \hline 0.050 (3) & 0.036 (3) \\ \hline 0.049 (3) & 0.054 (3) \\ \hline 0.037 (3) & 0.059 (3) \\ \hline 0.021 (2) & 0.037 (3) \\ \hline 0.028 (2) & 0.028 (2) \\ \hline 0.048 (3) & 0.028 (2) \\ \hline 0.032 (2) & 0.018 (2) \\ \hline 0.036 (3) & 0.030 (2) \\ \hline 0.036 (3) & 0.049 (3) \\ \hline 0.046 (3) & 0.064 (4) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} 0.0188 (3)0.0192 (3)0.0200 (3) $-0.0091 (2)$ 0.0477 (7)0.0351 (7)0.0390 (7) $-0.0174 (6)$ 0.022 (2)0.030 (2)0.022 (2) $-0.0093 (19)$ 0.039 (3)0.032 (2)0.031 (2) $-0.017 (2)$ 0.050 (3)0.036 (3)0.048 (3) $-0.020 (2)$ 0.049 (3)0.054 (3)0.040 (3) $-0.027 (3)$ 0.037 (3)0.059 (3)0.023 (2) $-0.010 (2)$ 0.028 (2)0.020 (2) $-0.010 (2)$ 0.028 (2)0.020 (2) $-0.017 (2)$ 0.032 (2)0.018 (2) $0.032 (2)$ $-0.017 (2)$ 0.036 (3)0.029 (2) $0.025 (2)$ $-0.017 (2)$ 0.036 (3)0.030 (2) $0.026 (2)$ $-0.0085 (19)$ 0.036 (3) $0.030 (2)$ $0.026 (2)$ $-0.009 (2)$ 0.036 (3) $0.049 (3)$ $0.050 (3)$ $-0.012 (3)$ 0.046 (3) $0.064 (4)$ $0.020 (2)$ $-0.030 (3)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0188 (3)0.0192 (3)0.0200 (3) $-0.0091 (2)$ 0.0009 (2)0.0477 (7)0.0351 (7)0.0390 (7) $-0.0174 (6)$ $-0.0086 (5)$ 0.022 (2)0.030 (2)0.022 (2) $-0.0093 (19)$ 0.0009 (17)0.039 (3)0.032 (2)0.031 (2) $-0.017 (2)$ 0.005 (2)0.050 (3)0.036 (3)0.048 (3) $-0.020 (2)$ 0.004 (2)0.049 (3)0.054 (3)0.040 (3) $-0.027 (3)$ 0.005 (2)0.037 (3)0.059 (3)0.023 (2) $-0.010 (2)$ 0.0043 (19)0.021 (2)0.037 (3)0.027 (2) $-0.010 (2)$ 0.0001 (18)0.028 (2)0.028 (2)0.020 (2) $-0.017 (2)$ 0.005 (2)0.032 (2)0.018 (2)0.032 (2) $-0.017 (2)$ 0.005 (2)0.032 (2)0.028 (2)0.025 (2) $-0.017 (2)$ 0.005 (2)0.036 (3)0.029 (2)0.025 (2) $-0.0147 (19)$ 0.0019 (17)0.036 (3)0.030 (2)0.026 (2) $-0.009 (2)$ 0.0018 (19)0.036 (3)0.049 (3)0.050 (3) $-0.012 (3)$ 0.011 (2)0.046 (3)0.069 (4)0.037 (3) $-0.028 (3)$ 0.019 (2)0.046 (3)0.064 (4)0.020 (2) $-0.030 (3)$ 0.007 (2)

C15	0.036 (3)	0.039 (3)	0.021 (2)	-0.023 (2)	0.0021 (18)	-0.0062 (19)
C16	0.031 (2)	0.028 (2)	0.024 (2)	-0.018 (2)	-0.0026 (18)	-0.0012 (18)
C17	0.037 (3)	0.025 (2)	0.035 (3)	-0.006 (2)	-0.009 (2)	0.006 (2)
C18	0.032 (2)	0.023 (2)	0.041 (3)	-0.009 (2)	0.005 (2)	-0.003 (2)
N1	0.0239 (18)	0.0219 (18)	0.0241 (18)	-0.0094 (15)	0.0024 (14)	-0.0071 (15)
N2	0.041 (2)	0.032 (2)	0.0208 (18)	-0.0159 (18)	0.0025 (16)	-0.0005 (16)
N3	0.0266 (19)	0.0244 (19)	0.0246 (18)	-0.0107 (16)	0.0009 (14)	-0.0064 (15)
N4	0.0250 (19)	0.0222 (18)	0.0219 (17)	-0.0082 (16)	-0.0014 (14)	-0.0055 (15)
N5	0.041 (2)	0.037 (2)	0.0193 (18)	-0.0133 (19)	-0.0047 (16)	0.0021 (16)
N6	0.0179 (17)	0.0263 (19)	0.0310 (19)	-0.0096 (15)	0.0020 (14)	-0.0075 (15)
N7	0.0252 (12)	0.0359 (15)	0.043 (2)	-0.0149 (11)	0.0013 (16)	-0.0121 (18)
01	0.0239 (13)	0.0269 (14)	0.0258 (14)	-0.0155 (10)	0.0026 (12)	-0.0062 (12)
O2	0.0180 (14)	0.0258 (15)	0.0295 (15)	-0.0068 (12)	0.0002 (12)	-0.0075 (13)
03	0.0229 (14)	0.0463 (19)	0.0324 (16)	-0.0175 (14)	0.0022 (13)	-0.0103 (14)
O4	0.064 (2)	0.050(2)	0.0339 (18)	-0.0329 (19)	-0.0067 (16)	0.0074 (16)
05	0.050(2)	0.037 (2)	0.064 (2)	-0.0182 (18)	-0.0146 (18)	-0.0055 (17)
06	0.047 (2)	0.037 (2)	0.059 (2)	-0.0079 (17)	0.0078 (17)	-0.0037 (17)

Geometric parameters (Å, °)

Co1-01	1.928 (3)	C12—C13	1.379 (7)
Co1—O2	1.930 (3)	C12—H12	0.9300
Co1—N4	1.948 (3)	C13—C14	1.375 (7)
Co1—N6	1.949 (3)	C13—H13	0.9300
Co1—N1	1.953 (3)	C14—C15	1.392 (6)
Co1—N3	1.957 (3)	C14—H14	0.9300
C1—C2	1.388 (6)	C15—N5	1.388 (6)
C1—C6	1.400 (6)	C16—N4	1.337 (5)
C1—N1	1.412 (5)	C16—N5	1.349 (5)
C2—C3	1.383 (6)	C16—C17	1.483 (6)
C2—H2A	0.9300	C17—C18	1.521 (6)
C3—C4	1.404 (7)	C17—H17A	0.9700
С3—Н3	0.9300	C17—H17B	0.9700
C4—C5	1.360 (7)	C18—N6	1.491 (5)
C4—H4	0.9300	C18—H18A	0.9700
C5—C6	1.399 (6)	C18—H18B	0.9700
С5—Н5А	0.9300	N2—H2	0.8600
C6—N2	1.372 (5)	N3—H3B	0.9000
C7—N1	1.331 (5)	N3—H3C	0.9000
C7—N2	1.351 (5)	N5—H5	0.8600
С7—С8	1.484 (6)	N6—H6A	0.9000
C8—C9	1.504 (5)	N6—H6B	0.9000
C8—H8A	0.9700	N7—O3	1.233 (4)
C8—H8B	0.9700	N7—O2	1.319 (4)
C9—N3	1.496 (5)	N7—O1	1.327 (4)
С9—Н9А	0.9700	O4—H1O4	0.8500
С9—Н9В	0.9700	O4—H2O4	0.8496
C10-C11	1.383 (6)	O5—H1O5	0.8501
C10—C15	1.394 (5)	O5—H2O5	0.8500
C10—N4	1.419 (5)	O6—H1O6	0.8500

supplementary materials

C11—C12	1.394 (6)	O6—H2O6	0.8499
C11—H11	0.9300		
O1—Co1—O2	68.37 (12)	C14—C13—C12	121.3 (4)
O1—Co1—N4	89.76 (12)	C14—C13—H13	119.3
O2—Co1—N4	92.05 (12)	С12—С13—Н13	119.3
O1—Co1—N6	98.11 (13)	C13—C14—C15	116.5 (4)
O2—Co1—N6	166.39 (13)	C13—C14—H14	121.7
N4—Co1—N6	89.37 (14)	C15—C14—H14	121.7
O1—Co1—N1	91.42 (12)	N5-C15-C14	131.0 (4)
O2—Co1—N1	89.38 (12)	N5-C15-C10	106.1 (3)
N4—Co1—N1	178.40 (14)	C14—C15—C10	122.9 (4)
N6—Co1—N1	89.40 (13)	N4	111.3 (4)
O1—Co1—N3	166.29 (13)	N4—C16—C17	128.0 (4)
O2—Co1—N3	97.97 (13)	N5-C16-C17	120.6 (4)
N4—Co1—N3	89.66 (13)	C16—C17—C18	115.8 (3)
N6—Co1—N3	95.58 (14)	С16—С17—Н17А	108.3
N1—Co1—N3	89.44 (13)	C18—C17—H17A	108.3
C2—C1—C6	120.0 (4)	C16—C17—H17B	108.3
C2—C1—N1	132.3 (4)	C18—C17—H17B	108.3
C6—C1—N1	107.7 (4)	H17A—C17—H17B	107.4
C3—C2—C1	117.8 (4)	N6-C18-C17	111.2 (3)
C3—C2—H2A	121.1	N6	109.4
C1—C2—H2A	121.1	C17—C18—H18A	109.4
C2—C3—C4	121.4 (5)	N6	109.4
С2—С3—Н3	119.3	C17—C18—H18B	109.4
С4—С3—Н3	119.3	H18A—C18—H18B	108.0
C5—C4—C3	121.5 (4)	C7—N1—C1	106.1 (3)
С5—С4—Н4	119.2	C7—N1—Co1	125.7 (3)
C3—C4—H4	119.2	C1—N1—Co1	128.2 (3)
C4—C5—C6	117.2 (4)	C7—N2—C6	108.1 (3)
C4—C5—H5A	121.4	C7—N2—H2	125.9
С6—С5—Н5А	121.4	C6—N2—H2	125.9
N2—C6—C5	131.4 (4)	C9—N3—Co1	112.9 (2)
N2—C6—C1	106.5 (3)	C9—N3—H3B	109.0
C5—C6—C1	122.0 (4)	Co1—N3—H3B	109.0
N1—C7—N2	111.6 (4)	C9—N3—H3C	109.0
N1—C7—C8	127.2 (3)	Co1—N3—H3C	109.0
N2—C7—C8	121.1 (4)	H3B—N3—H3C	107.8
C7—C8—C9	116.8 (4)	C16—N4—C10	106.1 (3)
С7—С8—Н8А	108.1	C16—N4—Co1	125.6 (3)
С9—С8—Н8А	108.1	C10—N4—Co1	128.3 (3)
С7—С8—Н8В	108.1	C16—N5—C15	108.5 (3)
С9—С8—Н8В	108.1	C16—N5—H5	125.8
H8A—C8—H8B	107.3	C15—N5—H5	125.8
N3—C9—C8	111.6 (3)	C18—N6—Co1	113.3 (2)
N3—C9—H9A	109.3	C18—N6—H6A	108.9
С8—С9—Н9А	109.3	Co1—N6—H6A	108.9
N3—C9—H9B	109.3	C18—N6—H6B	108.9

supplementary materials

С8—С9—Н9В	109.3	Co1—N6—H6B	108.9
Н9А—С9—Н9В	108.0	H6A—N6—H6B	107.7
C11—C10—C15	119.7 (4)	O3—N7—O2	125.0 (4)
C11—C10—N4	132.3 (4)	O3—N7—O1	125.0 (4)
C15—C10—N4	108.0 (4)	O2—N7—O1	110.0 (3)
C10-C11-C12	117.4 (4)	N7—O1—Co1	90.7 (2)
C10-C11-H11	121.3	N7—O2—Co1	90.9 (2)
C12—C11—H11	121.3	H1O4—O4—H2O4	104.9
C13—C12—C11	122.1 (5)	H1O5—O5—H2O5	107.7
C13—C12—H12	118.9	H1O6—O6—H2O6	107.7
C11—C12—H12	118.9		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
N2—H2…O4	0.86	1.91	2.757 (5)	168
N3—H3 <i>B</i> ···Cl1 ⁱ	0.90	2.56	3.322 (3)	143
N3—H3 <i>C</i> ···O3 ⁱⁱ	0.90	2.08	2.897 (4)	150
N5—H5···Cl1 ⁱⁱⁱ	0.86	2.29	3.148 (4)	174
N6—H6A····O4 ⁱ	0.90	2.54	3.299 (5)	142
N6—H6 <i>B</i> ···O3 ⁱⁱ	0.90	2.12	2.897 (4)	145
O4—H1 <i>O</i> 4…O5	0.85	1.92	2.766 (4)	179
O4—H2 <i>O</i> 4···O6 ^{iv}	0.85	1.93	2.781 (5)	179
O5—H1O5···Cl1 ^v	0.85	2.41	3.189 (3)	153
O5—H2 <i>O</i> 5…O1 ^{vi}	0.85	2.03	2.872 (4)	174
O6—H1 <i>O</i> 6…O2	0.85	2.01	2.828 (4)	162
O6—H2O6···Cl1 ^{vi}	0.85	2.34	3.192 (4)	176

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*, *z*+1; (iv) -*x*+1, -*y*+2, -*z*+1; (v) *x*-1, *y*+1, *z*; (vi) -*x*+1, -*y*+1, -*z*+1.